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The paper examines the effect of the bottom stress on the weakly nonlinear
evolution of a narrow-band wave field, as a potential mechanism of suppression
of ‘freak’ wave formation in water of moderate depth. Relying upon established
experimental studies the bottom stress is modelled by the quadratic drag law with
an amplitude/bottom roughness-dependent drag coefficient. The asymptotic analysis
yields Davey–Stewartson-type equations with an added nonlinear complex friction
term in the envelope equation. The friction leads to a power-law decay of the
spatially uniform wave amplitude. It also affects the modulational (Benjamin–Feir)
instability, e.g. alters the growth rates of sideband perturbations and the boundaries
of the linearized stability domains in the modulation wavevector space. Moreover,
the instability occurs only if the amplitude of the background wave exceeds a certain
threshold. Since the friction is nonlinear and increases with wave amplitude, its effect
on the formation of nonlinear patterns is more dramatic. Numerical experiments
show that even when the friction is small compared to the nonlinear term, it
hampers formation of the Akhmediev/Ma-type breathers (believed to be weakly
nonlinear ‘prototypes’ of freak waves) at the nonlinear stage of instability. The
specific predictions for a particular location depend on the bottom roughness ks in
addition to the water depth and wave field characteristics.

1. Introduction
Anomalously high ocean waves, exceeding 2.3 times the significant wave height

Hs and commonly referred to as ‘freak’ or ‘rogue’ waves, have been a subject of
marine folklore for centuries. In recent years well-documented observations of freak
wave events have become available, such as those of Haver (2000). Freak waves are
often unusually steep (‘walls of water’), asymmetric and short-lived, the typical event
duration being of the order of just 10 wave periods. They are often preceded and/or
followed by deep troughs (‘holes in the sea’) and may appear as a single or a group
of a few successive waves (‘three sisters’). But the most mysterious feature making
freak waves a serious threat for navigation and offshore activities is their propensity
to appear seemingly out of nowhere, i.e. in otherwise totally benign conditions
and without any precursors. Starting with the pioneering work of Smith (1976),
the research community has made substantial efforts to discover the mechanisms
behind these rare, but unfortunately not negligibly rare, events. Considerable progress
has been made, and, in the absence of wave–current interaction, two main generic
mechanisms were identified: the Benjamin–Feir (BF) or modulational instability
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(Peregrine 1983; Osborne, Onorato & Serio 2000), and the essentially linear space–
time focusing (see e.g. Slunyaev et al. 2002; Kharif & Pelinovsky 2003, for a recent
review). A combination of both mechanisms should be regarded as the general
case.

Although observations suggest that a freak wave is typically an essentially nonlinear
phenomenon, linear and weakly nonlinear mechanisms do lead to its formation, even if
they cannot explain some strongly nonlinear features. The situation closely resembles
that of wave breaking that in itself is an essentially nonlinear phenomenon, but is
triggered by the development of some linear and weakly nonlinear effects (Song &
Banner 2002). The key role of the modulational instability in the formation of freak
waves is supported by the numerical experiments of Tanaka (1990) and Dyachenko &
Zakharov (2005) and field observations. Janssen (2003) has introduced the Benjamin-
Feir Index (BFI) to characterize the narrowness of the wind wave spectra (more
precisely the ratio of nonlinear and dispersion effects for narrow-band spectra) and
to identify those situations where the BF instability is more likely. The recorded
observations of freak waves do indeed cluster around such situations.

The basic model for a deterministic description of narrow-band wave fields is
the classic nonlinear Schrödinger (NLS) equation (e.g. Mei, Stiassnie & Yue 2005),
which is exactly solvable (Zakharov & Shabat 1971). Some of its exact solutions
appear to be plausible weakly nonlinear ‘prototypes’ of freak waves. These are
the well-known breathers (see e.g. Dysthe & Trulsen 1999), which can be space-
or time-periodic (the Akhmediev and Ma breathers respectively), or non-periodic
(the Peregrine soliton); all have amplitudes exceeding the freak wave threshold. The
Peregrine (1983) solution represents a limiting configuration of both the Ma and
Akhmediev periodic patterns and seems to be the most plausible candidate. The
hump in the envelope amplitude reaches three times the background amplitude,
it appears out of nowhere and disappears without a trace. Osborne et al. (2000)
developed a way of predicting such patterns corresponding to particular homoclinic
orbits by means of an analysis of the initial data; their approach was later refined
and successfully extended beyond the simple integrable model to more realistic ones
by Onorato et al. (2001).

Compared to the amount of effort and resources spent on addressing the question
of what creates freak waves, surprisingly little attention has been paid to another at
least as important question: What can prevent the formation of freak waves? Indeed,
what the end users, such as mariners and offshore industry, would ultimately like to
know is: Are there areas of world ocean safe from freak waves, and, if yes, where are
they?

The prime purpose of this study is to demonstrate that there exists one mechanism,
namely the bottom friction, which may be sufficiently strong to arrest or totally
suppress the development of freak waves. We are interested in waves in water of
moderate depth, or more precisely, in the seemingly narrow range of water depth h′

in terms of dominant wave wavenumber k′, namely, k′h′ ∼ 0.7 − 1.7 (Throughout the
paper a prime denotes dimensional variables.). A disproportional share of sea traffic
and offshore activities occurs in such wave regimes. For an ocean swell of wavelength
λ∼ 500 m, this corresponds approximately to the depth range 100 − 150 m. Note that
the lower boundary of the BF instability interval, k′h′ � 1.363, applies to longitudinal
instability only and the oblique one exists down to k′h′ � 0.38 as shown by Benney &
Roskes (1969). The bottom friction has been so far neglected in this context, and even
for water of moderate depth, it is very weak due to the nearly exponential decrease of
orbital velocities with depth. The central finding of this study is that even a very weak
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bottom friction can hamper the BF instability and partially or completely suppress
the formation of any patterns resembling freak waves.

This paper is the first attempt to study and quantify the effect of bottom friction
on the development of the BF instability and, ultimately, to address the practical
questions raised above. It is known that only narrow-band wave fields can experience
the modulational instability, and we restrict ourselves to the simplest possible (NLS-
type) model, i.e. study the deterministic evolution of a narrow-band weakly nonlinear
wave field in water of moderate constant depth. The problem statement, scaling and
the asymptotic procedure are discussed in § 2. This is followed by a brief discussion of
the possible flow regimes in the wave bottom boundary layer and the corresponding
models of bottom stress in § 3. An asymptotic analysis is outlined in § 4 and leads to
a closed set of equations, differing from the Davey & Stewartson (1974) system by
the presence of bottom stress terms. It is important to note that the bottom friction
results in a nonlinear term in the amplitude equation that increases with the wave
amplitude. Its effect differs qualitatively from that of a linear damping of different
physical origin studied by Segur et al. (2005), Mei & Hancock (2003) and other
authors. In § 5 an examination of the linear stability of a uniform wavetrain yields the
threshold value of the friction sufficient to prevent completely the BF instability. The
effect of an even weaker friction on the formation of nonlinear patterns is studied in
§ 6. Results, along with some quantitative estimates, are discussed in § 7.

2. The problem, scaling and basic assumptions
Since only narrow-band wave fields can experience the modulational instability as

discussed by Janssen (2004), we consider the simplest generic model of such a wave
field; this is an arbitrary narrow-banded distribution of free water waves propagating
in water of moderate constant depth. Although the analysis is valid both for ocean
swell and wind waves we neglect the effect of wind at this stage. The relevance of the
model for real situations and in particular, the effect of wind, will be discussed in § 7.

Choose a coordinate system with x-axis aligned with the wave vector of the carrier
wave, z-axis directed vertically upward and unperturbed water surface placed at the
level z =0. By introducing the characteristic wave scales of length, phase speed and
frequency

K =
2π

λ
, C =

(
g′

K

)1/2

, Ω ′ = (g′K)1/2, (2.1)

the variables are made non-dimensional by

u′ = Cu, p′ = ρ ′C2p, ζ = Kζ ′, h = Kh′,

r = Kr ′, t = Ω ′t ′, ω′ = Ω ′ω, k′ = Kk.

}
(2.2)

Here g′ is the acceleration due to gravity, λ and K are (dimensional) wavelength
and wavenumber, u = {u, v, w}, p, ζ denote velocity, pressure and surface elevation
respectively; t , r = {x, y, z}, ω, k, h are time, position vector, frequency, wavenumber
and depth, respectively. The density of the fluid ρ ′ is assumed to be constant.
Hereinafter the dimensional variables are denoted either by primes or by script
capitals. For a few dimensional variables which do not have non-dimensional
counterparts throughout the paper the primes will be omitted and the fact that
the variable is dimensional will be explicitly stated in the text.
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The non-dimensional equations governing fluid motion are written in the form

q t + ∇⊥p = −(u · ∇) q +
τs

ρ ′C2

∂τ

∂z
, (2.3a)

wt + (p + gz)z = −(u · ∇) w +
τs

ρ ′C2
∇⊥ · τ , (2.3b)

∇⊥ · q + wz = 0, (2.3c)

where

∇⊥ =

{
∂

∂x
,

∂

∂y

}
, ∇ =

{
∂

∂x
,

∂

∂y
,

∂

∂z

}
(2.4)

are operators of the horizontal and full gradient, q = {u, v} is horizontal velocity,

g =
g′K
Ω ′2 (2.5)

is the non-dimensional gravitational acceleration and

τ = {τxz, τyz} (2.6)

is the vector of vertical stress and τs is its magnitude.
The standard kinematic and dynamic conditions are imposed at the moving surface

of the fluid z = ζ ,

ζt − w + (q · ∇⊥)ζ = 0, (2.7a)

p − gz = pa, (2.7b)

where pa is the atmospheric pressure and at the bed

u = 0 at z = −h. (2.7c)

The solution to (2.3), (2.7) is sought in the form of series⎛
⎝ u

ζ

p − pa

⎞
⎠ =

∞∑
n=1

εn

n∑
m=−n

⎛
⎝unm

ζnm

pnm

⎞
⎠ exp{imΘ} (2.8a)

in wave steepness

ε = Kζs. (2.8b)

Here ζs is a typical dimensional wave height and

Θ = kx − ωt (2.8c)

is the carrier wave phase. Since the wave fields are real functions, the amplitudes fnm

in (2.8) satisfy the relation

fn,−m = f̄ nm,

where the overbar denotes the complex conjugate. The amplitudes are allowed to
evolve at slow time and space scales

x1 = εx, x2 = ε2x, . . . ,

y1 = εy, y2 = ε2y, . . . ,

t1 = εt, t2 = ε2t, . . . ,

⎫⎪⎬
⎪⎭ (2.9)
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with the operators of horizontal gradient and time derivative redefined accordingly:

∇⊥ =

{
k

∂

∂Θ
, 0

}
+ ε∇1 + ε2∇2 + · · · , (2.10a)

∂

∂t
= −ω

∂

∂Θ
+ ε

∂

∂t1
+ ε2 ∂

∂t2
+ · · · . (2.10b)

We assume that:
(a) The atmospheric pressure is constant and the wind stress negligible at the fluid

surface, i.e.

pa = const, τ = 0 at z = ζ. (2.11)

Momentum exchange between the ocean and the atmosphere is known to be most
effective at spatial scales much smaller than those of interest here and is almost
non-existent for the developed waves at the spectral peak. The indirect transfer of
momentum from wind to smaller scales and then via nonlinear interactions to the
dominant waves is not explicitly taken into account either (see discussion in § 7).

(b) The water is stipulated to be of moderate depth:

kh ∼ 1. (2.12)

(c) The wave steepness ε deemed to be sufficiently small so that

ε � 1. (2.13)

(d) The O(ε) motions at the zeroth harmonic are absent, i.e.

u10 ≡ 0, p10 ≡ 0, ζ10 ≡ 0. (2.14)

Equations (2.3), (2.7) do admit solutions at zeroth harmonic at O(ε) but these are
not induced by waves; chosen to be zero initially, they remain at most O(ε2).

The magnitude of the stress terms and their functional dependence on the wave
parameters remain to be discussed. For the moment we assume that to the main
order in ε the motion is unaffected by the stress, and the (1, 1) solution, i.e. the terms
with n = 1, m = 1 in the series (2.8), is the usual inviscid, plane, harmonic wave of
amplitude A described by

ζ11 = A, p11 = A
ω2

k

cosh k(z + h)

sinh kh
,

w11 = −iωA
sinh k(z + h)

sinh kh
, u11 = ωA

cosh k(z + h)

sinh kh
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.15)

where the frequency and the wavenumber are connected by the linear dispersion
relation

ω2 = gk tanh kh. (2.16)

Clearly, the no-slip condition (2.7c) is not satisfied by (2.15), meaning that a boundary
layer of width δ′ is formed near the bottom. The velocity shear inside the boundary
layer is much higher than in the bulk flow and may produce significant levels of
turbulence and bottom stress.

No a priori assumption is made concerning irrotationality of flow, in contrast to the
classical studies of wave modulations in water of intermediate depth, such as those
of Benney & Roskes (1969), Davey & Stewartson (1974), Djordjevic & Redekopp
(1977), Mei et al. (2005). Indeed, the stress, however small, introduces vorticity into
the flow and thus the potential approximation breaks down (Lamb 1932).
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3. The stress terms and the bottom boundary layer
A wave propagating in the ocean experiences the action of two fundamental

dissipative mechanisms, molecular viscosity and turbulence, which both contribute to
the stress terms in (2.3). The kinematic viscosity ν ′

e of seawater is ∼ 10−6 m2 s−1 and
the Reynolds number

Re =
Cλ

ν ′
e

,

based on the phase speed C and the (dimensional) wavelength λ of swell or dominant
wind waves is normally so large (of order of 1010), that the influence of molecular
viscosity may be safely neglected in the bulk of the fluid. It is known as well that the
velocity shear produced by a wave in the body of the fluid is too weak to generate
significant levels of turbulence in the absence of wave breaking or significant wind
stress. A typical value of the dimensional friction velocity u∗,

u∗
2 =

τs

ρ ′ , (3.1)

is of the order of 1 cm s−1 near the sea surface, which leads to an estimate

τs

ρ ′C2
=

(u∗

C

)2

∼ 10−7, (3.2)

which indicates that the turbulent stresses are negligibly weak in the bulk of the water.
The solution of (2.3) is essentially inviscid away from the bottom. There is always
a well-developed surface turbulent boundary layer (Terray et al. 1996). However, the
dissipation experienced by the dominant wave is mainly due to the formation of
a bottom boundary layer (BBL), where the velocity shear is much stronger and a
significant amount of turbulence may be generated.

The nature of the BBL and the structure of the flow therein depend strongly on
whether the BBL should be considered steady or oscillatory (OBL). The boundary
layers that can be treated as steady, such as those associated with tidal currents,
have much greater thickness and often extend well into the bulk of fluid, while the
velocity variation with the distance from the bottom follows the well-known ‘law
of the wall’ described by Soulsby (1990). On the contrary, an OBL is created and
destroyed at every wave period; its width δ′ is usually very small in comparison to
the total depth and varies with time; the velocity within often does not follow the
log-law as demonstrated Kajiura (1968) and Jensen, Sumer & Fredsøe (1989). A
criterion a priori separating these two types of flow was proposed by Kajiura (1964),
who considered the relative importance of the pressure gradient and the inertia in
the BBL. According to Kajiura, for motion of frequency ω′ in water of depth h′, the
BBL is oscillatory, provided

U
ω′h′ � 40, (3.3)

where U is the magnitude of orbital velocity at the outer border of the BBL.
Solution (2.8) is composed of multiple harmonics of the fundamental frequency ω

plus a slowly evolving induced current. It is natural to assume that the bottom stress
will exhibit the same structure, i.e. may be represented as a series

τ =

∞∑
−∞

τ̂
(m) exp{imΘ}, (3.4)



Can bottom friction suppress ‘freak waves’? 269

ε λ (m) K (m−1) C (m s−1) Ω ′ (s) ζs (m)

Case A (swell) 0.05 500 0.0126 27.9 0.35 4
Case B (wind waves) 0.1 100 0.0628 12.5 0.79 1.6

Table 1. Values of the wave parameters chosen for estimates.

where τ̂
(m) do not depend on the fast variables, as proposed by Jonsson (1980). Each

harmonic in the expansion (2.3) creates its own boundary layer near the bottom.
Obviously, these are overlapping and therefore inter-harmonic interaction may occur.
However, we assume that this interaction may be neglected and each term in (3.4) is
dealt with separately. In particular, the magnitude, phase and vertical distribution of
τ̂

(m) are assumed to be independent of the parameters, such as orbital velocity and
excursion, of harmonics other than the mth.

This is a rather bold assumption, since there exists a considerable amount of
data suggesting the opposite. In particular, wave interaction with a steady current in
the near-bed region has attracted considerable attention, for example Soulsby et al.
(1993). It has been found that the effect of waves does change the current’s BL, since
waves effectively create an additional roughness at the bottom, which leads to an
increase of the bottom stress experienced by the current (Grant & Madsen 1979).
However, no reverse influence has been discovered, even when the velocities induced
by the current exceed those induced by the waves by several times (Nielsen 1992). A
plausible explanation is that the width of the wave boundary layer (WBL) is much
smaller than that of the current and hence the velocity gradients within the wave
BBL are orders of magnitude larger. Little is known about the interaction between
two oscillating flows; however, one should take into account the property that the
velocities at the bottom associated with higher harmonics are much smaller than at
the fundamental frequency, due to both the amplitude scaling (2.8a) and faster decay
of the velocity with depth. Thus, to leading order, the only interaction effect that has
to be taken into account is the action of the fundamental harmonic on the induced
flow.

Let us choose for the estimates two sets of wave parameters corresponding to
typical swell and wind waves, denoted by Case A and Case B and presented in
table 1. In both cases we set

h = 1.5, k = 1, ω = tanh kh (3.5)

corresponding to water of depths h′ ≈ 120 m and h′ ≈ 25 m, respectively. The
magnitudes of orbital velocity U and excursion of a fluid particle A near the
bottom, at the first harmonic, can be calculated from (2.15)

U =
ε Cω

sinh kh
, A =

U
ωΩ ′ =

εK−1

sinh kh
. (3.6)

The estimate for the induced flow should take into account the property of uniformity
over the entire depth (see § 4); at the same time the magnitude of its velocity is of
order of ε2C. Moreover, it is a motion with a much longer time scale, namely, ε−1Ω ′−1.
The orbital velocity and excursion associated with the induced flow are then given by

U(0) � ε2C, A(0) � U(0)

ε Ω ′ � ε
C
Ω ′ = εK−1. (3.7)
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U (m s−1) A (m) U(0) (m s−1) A(0) (m)

Case A (swell) 0.62 1.87 0.07 3.98
Case B (wind waves) 0.56 0.75 0.12 1.59

Table 2. Orbital velocities for excursions near the bed.

Rea Ro Re(0)
a Ro(0)

Case A (swell) 1.1 × 106 37 2.5 × 105 79

Case B (wind waves) 3.8 × 106 15 1.8 × 105 32

Table 3. Reynolds and roughness numbers.

The quantitative estimates corresponding to Cases A and B are given in table 2.
Substituting the values of U, U(0) obtained for Case A into Kajiura’s criterion gives

U
ω′h′ ≈ 0.016,

U(0)

ω′(0)h′ � ε C
Ω ′h′ ≈ 0.033, (3.8)

and suggests that the boundary layers at both the fundamental and zeroth-harmonic
should be treated as oscillatory. The corresponding values for Case B are 0.03 and
0.061 respectively and the conclusion remains the same for the whole range of wave
scales and parameters that might be of interest in the context of freak waves.

The flow in the OBL is mainly controlled by two non-dimensional parameters, the
amplitude Reynolds number Rea and the roughness number Ro, defined by

Rea =
UA
νe

, Ro =
A
ks

, (3.9)

where ks is the dimensional Nikuradze roughness of the bottom (Soulsby 1998).
Taking the conservative estimate ks � 5 cm yields the set of values found in table 3.

Nielsen (1992) and Soulsby (1998), and references therein, suggest that the values
in table 3 correspond to boundary layers that are ‘rough turbulent ’ both at the first
and zeroth harmonic and for both the swell and the wind waves. In a rough-turbulent
OBL the dependence of the properties of the flow on Rea is completely lost and the
roughness number Ro remains the only governing parameter. Numerous attempts to
build an analytical model of a turbulent OBL have been made, mainly using the
concept of eddy viscosity. Within the framework of such an approach, the turbulent
stress in the OBL is presented in the form

τ = νt

∂u
∂z

, (3.10)

where νt is the eddy viscosity, either constant through the BL or, more often, depth-
dependent. The usual approach is to solve the equations of motion in the BL and to
match the solution to the inviscid flow. There are some complete flow models, such
as that presented by Thais et al. (2001). However this common approach has serious
disadvantages. Experiments suggest that the log-layer is absent at roughness numbers
Ro smaller than 50, and even at larger values it appears only at certain phases of the
flow. This renders dimensional analysis, similar to that used in steady BLs, void and
requires a prescription of νt as a function of z from the very beginning in a somewhat
arbitrary way. In the OBL νt may also be time-dependent and complex, which makes
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the equations obtained more difficult to solve (see Nielsen 1992). More importantly,
the experiments of Sleath (1987) clearly show that the total stress in the OBL is an
order of magnitude larger than that caused by turbulence proper. This is due to the
fact that the flow in the boundary layer is non-potential and the wave-induced stress
τw = ρ ′ũw̃ is non-zero and large (Nielsen 1992). All in all, using the concept of eddy
viscosity in oscillatory flow is not well justified and does not appear to provide any
advantage over much simpler models, such as based on wave drag, unless one is
interested in the OBL inner structure itself.

The dimensional analysis of Soulsby (1990) suggests that the thickness of the
turbulent boundary layer is inversely proportional to the frequency of the flow,

δ′ ∼ u∗

ω′ , (3.11)

where u∗ is the friction velocity in the BBL. This result is well corroborated by
the experimental data of Klopman (1994). Taking u∗ ≈ 3 cm s−1, the dimensional
boundary layer thickness δ′ is estimated to be a few tens of centimetres and the
non-dimensional

δ = Kδ′ � 5 × 10−4.

Within this very thin layer the flow is almost horizontal, with velocity and stress
varying rapidly and the magnitude of the stress falling almost to zero at the height of
a few multiples of δ′ from the bottom (Jonsson 1980). In our context, fortunately, the
internal structure and dynamics of the BBL can be ignored; it is natural to assume
that all the stress is applied at a point z = − h. To describe this stress we adopt a
drag law, similar to that used by hydraulic engineers:

τ ′

ρ ′ =
fw

2
|U | U (3.12)

where fw is called the friction coefficient. Note two principal differences from the
standard steady case:

(a) There exists a phase lag, ϕ, between the stress and the orbital velocity, so that

τ̂
(m) = |τ̂ (m)|eiϕm (3.13)

The value of the phase lag in a laminar OBL (Stokes layer) is well known, ϕλ = 45◦,
but no reliable theoretical estimate exists for the turbulent one. The experimental
data suggest the value

ϕ ≈ 25◦ − 30◦ (3.14)

at 15 � Ro � 70 (Jonsson 1980; Jensen et al. 1989; Nielsen 1992).
(b) In a rough-turbulent OBL, fw is not a universal constant but a function of

the roughness number Ro. Several models of this dependence have been proposed
by Swart (1974), Myrhaug (1989) and others. However, the model of Soulsby (1998)
seems to be the simplest, most robust and the most suitable for our purposes. It
suggests a polynomial law

fw = 0.237Ro−σ , (3.15)

with an exponent σ ≈ 0.52, obtained by the fit to a large set of experimental data
(see figure 1) taken from seven different sources as detailed in figure 9 of Soulsby
et al. (1993).

Substituting the wave parameters and estimates of orbital velocities given into
(3.12) results in the values of the friction coefficients and stress magnitudes given in
table 4.
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Figure 1. Dependence of the friction coefficient, fw on the roughness number Ro. (Based on
Soulsby (1998), figure 15.)

f (1)
w τ (1)

s ρ−1
∗ (m2 s2) f (0)

w τ (0)
s ρ−1

∗ (m2 s2)

Case A (swell) 0.036 7.02 × 10−3 0.024 5.9 × 10−5

Case B (wind waves) 0.058 9.05 × 10−3 0.039 3.06 × 10−4

Table 4. Values of the friction coefficient and bottom stress at the first and zeroth harmonic.

The stress experienced by the induced flow proves to be one or two orders of
magnitude smaller than that at the fundamental frequency. It is also clear that the
bottom stress acting on the higher harmonics is negligible, since the corresponding
orbital velocities are orders of magnitude smaller than at the fundamental frequency.
We therefore set

τ̂
(m) = 0, ∀ m �= 1 (3.16a)

in what follows.
We further infer that the effect of the bottom stress is exhibited at the same order as

nonlinearity/wave modulations, i.e. at ε3, and write the stress term at the fundamental
frequency in (2.3) in the form

τ (1)
s

ρ ′C2
τ (1)
xz = ε3τ̂eiΘ, (3.16b)

where the non-dimensional stress τ̂ (z) is non-zero only within the BBL, i.e. at

−h < z � −h + δ. (3.16c)

The value of the stress at the bottom is derived from the drag law (3.12), (3.15)

τ̂
∣∣
−h

= τ̂b = ν̃ exp {iϕ} |A|1−σA, (3.16d)
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with the friction coefficient ν̃ given by

ν̃ = ε−3 τ (1)
s

ρ ′C2
= 0.1185 ε−3

(
εK−1

ks sinh kh

)−σ ( ε ω

sinh kh

)2

= 0.237

(
1

ε

)1+σ (
Kks

)σ sinhσ kh

sinh 2kh
. (3.16e)

The spanwise component of the stress is obviously zero since in our case the carrier
wave is plane and the orbital velocity is collinear with the wave vector.

4. The evolution equations
The novel feature of the analysis to follow is an attempt to take into account

and quantify the effect of the bottom stress on the wave modulations. Apart from
the necessity of dealing with the stress terms, the analysis follows a route originating
from the classical papers of Benney & Roskes (1969) and Davey & Stewartson (1974).
For example, to obtain the second-order corrections to the velocity, surface elevation
and pressure fields one has to substitute the solutions (2.15) into the equations and
boundary conditions, then collect the terms at zero, first and second harmonics
separately and solve the equations obtained. The corrections to the first, the zeroth
and the second harmonic are then used in a similar way to proceed to O(ε3). For
brevity we omit certain standard steps, not essential for the main goal. These are
readily available in the literature, for example Colin, Dias & Ghidaglia (1995), who
used a very similar approach not relying upon the assumption of the potentiality of
the motion, but did not take account of friction.

The calculations for the first harmonic at O(ε2) lead to the standard transport
equation for the wave envelope

At1 + cgAx1
= 0, (4.1a)

where cg is the group speed of the carrier given by

cg =
ω

k

(
1

2
+

kh

sinh 2kh

)
. (4.1b)

The induced flow (zeroth harmonic) manifests itself at this order through an
additional, depth-independent, pressure field P ,

p20 = P − ω2|A|2 cosh 2k(z + h)

sinh2 kh
, Pz ≡ 0, (4.2a)

a setup/setdown

gζ20 = P − ω2|A|2

sinh2 kh
(4.2b)

and a purely horizontal velocity field

u20 = {q20, 0} . (4.2c)

None of the fields associated with the induced flow can be found at this order.

4.1. O(ε3): zeroth harmonic

According to our estimates in § 3, the bottom stress for the zeroth harmonic is
negligible and does not affect the induced flow. Thus straightforward algebra leads
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to the following set of equations:

∂q20

∂t1
+ ∇1P = 0, (4.3a)

∇1 · q20 +
∂w30

∂z
= 0, (4.3b)

∂ζ20

∂t1
+ 2ω coth kh

∂ |A|2
∂x1

− w30

∣∣
z=0

= 0. (4.3c)

The O(ε3) corrections to the pressure and the surface elevation are

p30 =
ω2

sinh2 kh
(z + h) sinh 2k(z + h)�[A], (4.4a)

ζ30 = 2h �[A], (4.4b)

where the operator � takes the form

�[A] = i{ĀAx1
− AĀx1

}. (4.4c)

Equation (4.3a) indicates that the velocity of the induced flow is depth-independent,
except in the BBL. Integrate (4.3b) with respect to z from −h to 0, add the result to
(4.3c) and substitute for ζ20 from (4.2b) to obtain

∂P

∂t1
+ g

∫ 0

−h

∇1 · q20 dz =
ω2

sinh2 kh

∂ |A|2
∂t1

− 2g2

ω

∂ |A|2
∂x1

. (4.5)

The induced flow velocity q20 can now be excluded from (4.5) with the use of (4.3a)
and the time derivative exchanged for the spatial one,

∂

∂t1
→ −cg

∂

∂x1

, (4.6)

due to (4.1). A single equation for the pressure P results with a forcing determined
by the wave envelope A {

c2
g

gh

∂2

∂x2
1

− ∇2
1

}
P = βp

∂2|A|2
∂x2

1

(4.7a)

βp =
c2
gω

2

gh sinh2 kh

{
1 +

g

cgω
sinh 2kh

}
(4.7b)

The equation does not contain dissipative terms and coincides with that obtained in
the classical model of Davey & Stewartson (1974).

4.2. O(ε3): first harmonic

Equation (4.7) contains two independent variables, the envelope function A and the
induced pressure P . We need an additional relation between them to close the system,
which is obtained by solving the system (2.3), (2.7) for the first harmonic at O(ε3). It
is at this order that the effect of the bottom stress is taken into account. Therefore,
the boundary layer cannot be neglected and the induced flow velocity q20 cannot be
considered constant down to the bed. Employing (3.16b), equations (2.3) can be cast
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into the following form:

−iωu31 + ikp31 = Fh +
∂τ̂

∂z
, (4.8a)

−iωw31 +
∂p31

∂z
= Fv + ikτ̂ , (4.8b)

iku31 +
∂w31

∂z
= Fc. (4.8c)

Through cross-differentiation (4.8) can be reduced to a single equation for the pressure
correction

∂2p31

∂z2
− k2p31 = Fp + 2ik

∂τ̂

∂z
. (4.9)

The surface boundary conditions can be manipulated in a standard way into(
∂p31

∂z
− ω2

g
p31

)
z=0

= Fs. (4.10)

Functions Fh, Fv , Fp , Fs depend on the wave and induced flow parameters, as well
as upon the independent variables. Their explicit forms are rather cumbersome but
exactly the same as in the non-dissipative case (see e.g. Colin et al. 1995).

Multiply (4.9) by cosh k(z + h)/ cosh kh and integrate the result over the depth.
Integration by parts of the left-hand side produces∫ 0

−h

cosh k(z + h)

cosh kh

(
∂2p31

∂z2
− k2p31

)
dz =

(
∂p31

∂z
− ω2

g
p31

)
0

− 1

cosh kh

∂p31

∂z

∣∣∣∣
−h

.

(4.11)

The last term can be estimated from (4.8b) as

∂p31

∂z

∣∣∣∣
−h

= ikτ̂b, (4.12)

since both w31 and Fp are exactly zero at the bottom.
Integration of the stress term on the right-hand side of (4.9) yields∫ 0

−h

cosh k(z + h)

cosh kh

∂τ̂

∂z
dz = − τ̂b

cosh kh
− k

∫ 0

−h

sinh k(z + h)

cosh kh
τ̂ dz, (4.13)

as the stress is absent at the surface. Since the stress is different from zero within the
boundary layer only, and due to (3.16c), the last term on the right-hand side can be
estimated as

k

∫ 0

−h

sinh k(z + h)

cosh kh
τ̂ dz � k

cosh kh

∫ −h+δ

−h

k(z + h) τ̂ dz �
max{τ̂}
2 cosh kh

(kδ)2.

The result is proportional to the square of the small parameter kδ and can be safely
neglected.

Using (4.10)–(4.13), we arrive at the identity

Fs =

∫ 0

−h

cosh k(z + h)

cosh kh
Fp dz − ikτ̂b

cosh kh
. (4.14)
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Substituting known explicit expressions for Fs , Fp into (4.14) yields the second
evolution equation connecting the wave envelope A and the induced pressure P :

i
∂A

∂t2
+

ωkk

2

∂2A

∂x2
1

+
cg

2k

∂2A

∂y2
1

+ α|A|2A − βaPA +
ikτ̂b

2ω cosh kh
= 0 (4.15a)

where

α = −ωk2

4
tanh2 kh (9 coth6 kh − 12 coth4 kh + 13 coth2 kh − 2), (4.15b)

βa =
ωk

g sinh 2kh
+

k

cg

. (4.15c)

Let us introduce new independent variables

t = t2, x =

(
2

|ωkk|

)1/2

x1, y =

(
2k

cg

)1/2

y1, (4.16a)

and new coefficients

η = 1 −
c2
g

gh
, s =

|ωkk|k
cg

. (4.16b)

Taking into account that for gravity waves,

η > 0, ωkk < 0, ∀ k (4.17)

the system (4.7), (4.15) can be rewritten in the form

iAt − Axx + Ayy + α|A|2A − βaPA + iν∗e
iϕ |A|1−σA = 0, (4.18a)(

η
∂2

∂x2
+ s

∂2

∂y2

)
P = −βp

(
|A|2

)
xx

, (4.18b)

where

ν∗ =
kν̃

2ω cosh kh
= 0.059

(
1

ε

)1+σ (
Kks

)σ k

ω

sinhσ−1 kh

cosh2 kh
, (4.18c)

which differs from the classical Davey–Stewartson equations only by the presence of
the complex nonlinear friction term.

Note that in situations where nonlinear friction affects primarily the first harmonic
(as in our case), sometimes the quadratic damping term can also be treated by
equivalent linearization whereby the quadratic formula is replaced by a linear formula,
with the damping coefficient in the latter determined by requiring the two formulae
to give the same rate of energy dissipation (see Mei et al. 2005, p. 285). This
simplification could to some extent be justified when one is interested in the evolution
of the mean amplitude of random wave fields. Here we are primarily interested in
nonlinear dynamics of ‘individual’ patterns, where the specific form of friction could
prove important. Therefore, throughout the paper we will study (4.18) preserving the
nonlinear friction as it is.

Consider first for simplicity one-dimensional modulations, i.e. assume for the time
being the wave amplitude not to depend on the spanwise coordinate (the two-
dimensional case is considered in Appendix A). The induced flow becomes a purely
forced motion

Pu = −βp

η
|Au|2 , (4.19a)
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and the system (4.18) reduces to a self-focusing NLS equation, modified by the friction
term,

iAt − Axx + α‖|A|2A + iν∗e
iϕ |A|1−σA = 0, (4.19b)

where

α‖ = α +
βaβp

η
. (4.19c)

5. Linear stability
Helpful insight into the effect of friction on the modulational instability within

the framework of the modified Davey–Stewartson system (4.18) is provided by the
standard analysis of linear stability. Consider a uniform wavetrain with superimposed
infinitesimal harmonic sidebands

A = Au(1 + ε̂ â) exp[iΘu], (5.1a)

P = Pu + ε̂p̂, (5.1b)

where Au, Θu are functions of time only,(
p̂

â

)
=

(
p

a

)
cos(mx + ly), (5.1c)

and ε̂ is a new formal small parameter representing the perturbation. Provided the
wave vector of the sideband falls within the ‘instability region’ in the (m, l)-plane,
the amplitudes a, p grow exponentially until slowed down and halted by nonlinearity.
The whole process can be described as energy transfer from the carrier to the sidebands
and back, which at the nonlinear stage of evolution can lead to the formation of
nonlinear patterns such as solitary waves and breathers. The ‘instability regions’ are
bordered by the ‘soft’

l2 − m2 = 0 (5.2a)

and ‘hard’, i.e. amplitude-dependent,

l2 − m2 = 2αϑA2
u (5.2b)

neutral stability curves (see Benney & Roskes 1969; Mei et al. 2005, for details). Here

αϑ = α +
βaβp

η
fϑ, fϑ =

(
1 +

s

η
tan2 ϑ

)−1

(5.2c)

and ϑ is the angle at which the perturbation travels, measured from the x-axis

tan ϑ =
l

m
(5.2d)

and s, η are given by (4.16b). The earlier introduced α‖ corresponds to the case of
strictly longitudinal envelope perturbations with ϑ = 0.

The effect of dissipation on the onset and development of the modulational
instability has been studied extensively in different contexts, mainly on the basis
of the NLS equation, and (to the best of our knowledge) only with a friction term
linear in amplitude. This is an appropriate model for the propagation of light in
lossy fibres (Hasegawa & Tai 1989; Karlsson 1995), of water waves over a random
seabed (Mei & Hancock 2003) and of water waves in deep narrow channels typical
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of laboratory tanks (Segur et al. 2005). The linear friction leads to an exponential
decay of the carrier amplitude and may influence the instability in different ways.

Part of the energy of the carrier wave is lost due to friction and its amplitude decays
with time. This limits the energy available for the transfer to unstable wavenumbers,
decreases the growth rates and, overall, hampers the development of instability. The
location of the ‘hard’ stability curve shifts as Au decreases, and the instability regions
shrink. A sideband that was initially unstable typically leaves the region of instability
and stops growing after some time.

However, our analysis suggests that the NLS equation with linear friction is not
an appropriate model for waves in water of moderate depth. The effect of induced
flow is important and the principal dissipative effect, the bottom stress, is essentially
nonlinear. Therefore, its effect on the sideband instability is expected to differ from
the previous findings.

On substituting (5.1) into (4.18) and separating real and imaginary parts, at O(1)
we obtain (4.19a), plus

Ȧu + ν∗ cosϕ A2−σ
u = 0, (5.3a)

Θ̇ − α‖A
2
u + ν∗ sinϕ A1−σ

u = 0, (5.3b)

where the dot denotes the time derivative. Introducing a new dependent variable

Λ = (1 − σ ) ν∗ cosϕ A1−σ
u , (5.4)

it becomes clear that (5.3a) implies

Λ̇ = −Λ2, (5.5)

which can be easily integrated

Λ =
Λ0

1 + Λ0 t
. (5.6)

Thus the amplitude of the carrier does not decay exponentially, as in the case of a
linear friction, but follows a power law. Obviously, the linear friction is a degenerate
case corresponding to a singular limit σ → 1. Note that if our basic state is already a
nonlinear pattern, say an envelope soliton or cnoidal wave, such that to the leading
order its energy is not a quadratic function of the amplitude, then its decay could be
algebraic even in the case of linear damping, see e.g. Mei & Li (2004).

In the linear approximation in ε̂, we find that p̂ is a forced field

p = −βp

η
fϑA2

u(a + ā) (5.7)

and the amplitude of the sidebands is governed by the following system of equations:

at = i

{
μ + αϑA2

u +
i

2
ν∗(1 − σ ) eiϕ A1−σ

u

}
a + i

{
αϑA2

u +
i

2
ν∗(1 − σ ) eiϕ A1−σ

u

}
ā,

(5.8a)

āt = −i

{
αϑA2

u − i

2
ν∗(1 − σ ) e−iϕ A1−σ

u

}
a − i

{
μ + αϑA2

u − i

2
ν∗(1 − σ ) e−iϕ A1−σ

u

}
ā,

(5.8b)

where a new parameter

μ = m2 − l2 (5.9)

is introduced to shorten the notation.
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Owing to the decay of the carrier amplitude with time, the coefficients in (5.8) are
time-dependent; in general, no solution can be found in closed form. This is not a
major setback, however, since the linear analysis is valid only at the initial stages of
the sideband evolution, when its amplitude may be considered infinitesimal.

5.1. Growth rates, instability domains and the amplitude threshold

Let us first study the system (5.8) at times short compared to the time scale of the
carrier decay

0 < t �
∣∣∣∣ΛΛ̇

∣∣∣∣
0

= Λ−1
0 . (5.10)

At this stage the decay of the carrier amplitude can be neglected and Au, Λ could be
treated as constants. Assuming

a(t) ∼ exp (γ t) , (5.11)

one immediately finds the equation for the growth rates

γ 2 + Λγ + D = 0, (5.12a)

where

D = μ
(
μ + 2 αϑA2

u − tan ϕ Λ
)
, (5.12b)

and its solution in explicit form

γ = −Λ

2
±

[
Λ2

4
− D

]1/2

. (5.13)

For instability to occur the real part of γ must be positive, which implies

Λ2

4
− D >

Λ2

4
⇒ D < 0. (5.14)

Equation (5.14) specifies the ‘instability domain’ in the (m, l)-plane, once the values
of the initial amplitude Au and the friction parameters ν∗, ϕ are given. Figure 2 shows
the instability regions for several values of the initial amplitude and ν∗ in water of
intermediate depth kh = 1.5. Hatched domains bounded by dashed curves correspond
to the conservative case ν∗ = 0. The instability regions seem to widen with the growth
of dissipation. This fact, though, is surprising only at first sight, since the sideband
amplitude am is relative. To find the absolute values it must be multiplied by Au,
which is decreasing in time. The growth rate (5.13) is very small near the stability
curves, certainly smaller than the decay rate of the carrier, γ � Λ. Thus in absolute
terms, the amplitude decreases in these regions.

To check this argument let us consider the linear stability of the absolute
perturbation

b = Aua, ⇒ bt = Auat + Ȧua. (5.15)

Multiply (5.8) by Au, and add

Ȧua =
Ȧu

Au

b = − Λ

1 − σ
b

on the right and on the left to obtain equations for b, b̄. Look again for exponentially
growing solutions, b ∼ exp{γabst}. Owing to the added terms (5.13) transforms to

γ 2
abs +

3 − σ

1 − σ
Λγabs +

{
μ

(
μ + 2αϑA2

u − Λ tan ϕ
)

+
2 − σ

(1 − σ )2
Λ2

}
= 0. (5.16)
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Au = 0.5, v* = 1
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Figure 2. Shaded and bounded by solid lines: instability domains for several values of the
carrier amplitudes Au and friction, ν∗. Hatched and bounded by dashed lines: instability
domains at ν∗ = 0. The water depth is kh = 1.5.

Similarly to (5.14), for instability to occur the term in curly brackets must be negative

Dabs = μ
(
μ + 2αϑA2

u − Λ tan ϕ
)

+
2 − σ

(1 − σ )2
Λ2 < 0. (5.17)

Instability domains where (5.17) holds are shaded in figure 3. Solid lines enclosing the
shaded region mark the position of the boundary, where Dabs = 0. For comparison the
instability domains corresponding to the frictionless case are hatched and bounded
by dashed lines. One can clearly observe that in terms of absolute perturbations the
dissipation hampers development of instability and makes its domain to shrink in all
cases. It is also worth noticing that it is the longitudinal perturbations that are most
susceptible to the influence of friction. The observation that the longest perturbations
are damped first might be important in the context of freak waves.

From a practical viewpoint, the most important issue is not whether modulations
with a given wavevector will be unstable or not, but whether a wave field at hand
can be stabilized by bottom friction and, if yes, what is the threshold value of the
bottom roughness? A rough estimate of this value could be found immediately from
(5.17) by requesting that the maximum of Dabs in the (m, l)-plane is exactly zero. For
example, for purely longitudinal perturbations, μ =m2, αϑ =α‖, and the maximum of
Dabs is attained when

μ+ = m2
+ =

Λ

2
tan ϕ − α‖A

2
u.
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Au = 1, v* = 0.2

Au = 1, v* = 0.5 Au = 1, v* = 1

Au = 1, v* = 0.32
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Figure 3. Shaded and bounded by solid lines: instability domains for several values of the
carrier amplitudes Au and friction, ν∗. Hatched and bounded by dashed lines: instability
domains at ν∗ =0. The water depth is kh = 1.5. Note that the values of parameters Au and ν∗
differ from those chosen for figure 2; in both cases the parameters were chosen to demonstrate
most clearly the qualitative difference between the instability domains.

Substituting μ+ into (5.17) we find that the perturbation with m = m+ is neutrally
stable (all other are damped), provided

2 − σ

(1 − σ )2
Λ2 −

(
Λ

2
tan ϕ − α‖A

2
u

)2

= 0

or {
(2 − σ )1/2

1 − σ
− tan ϕ

2

}
Λ = −α‖A

2
u. (5.18)

Taking into account (5.4) and the fact that the instability only occurs at negative α‖,
(5.18) can be further transformed to{

(2 − σ )1/2 cos ϕ − 1 − σ

2
sinϕ

}
ν∗

|α‖| = A1+σ
u . (5.19)

Taking ϕ = 25◦, σ = 0.52 the expression in the curly brackets is estimated to be very
close to 1 and the criterion for longitudinal stability is

|α‖|
ν∗

A1+σ
u � 1. (5.20)
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The expression on the left is simply the ratio of the magnitudes of the nonlinear and
frictional terms in the NLS equation.

6. Formation of nonlinear patterns
Although the linear stability analysis performed in the previous section does shed

some light on the influence of dissipation on the onset of modulational instability, it
is not sufficient to understand the formation of nonlinear structures such as extreme
waves. After a period of exponential growth, the amplitude of a sideband becomes
finite, the linear approximation invalid and a full nonlinear model (4.18), or (4.19b),
has to be considered. Fortunately, both the Davey–Stewartson and NLS equations are
integrable as shown by Zakharov & Shabat (1971), and a number of exact nonlinear
solutions were found to have simple analytical form. The most promising as prototypes
of freak waves are solutions of a breather type, which may have amplitudes several
times larger than the carrier wave and time spans of a few wave periods as pointed
out by Henderson, Peregrine & Dold (1999) and Dysthe & Trulsen (1999). The former
authors performed extensive numerical simulations of the propagation of a slightly
modulated train of surface waves within the framework of full two-dimensional
nonlinear Euler equations. They observed a number of ‘steep wave events’, bearing
remarkable similarity to both ocean ‘freak waves’ and breather solutions of the NLS
equation. Several types of breather solutions were found independently by Kuznetsov
(1977), Kawata & Inoue (1978), Ma (1979), Akhmediev, Eleonskii & Kulagin (1987)
and Peregrine (1983). The so-called Ma solitons are spatially localized and time-
periodic, the Akhmediev breathers are periodic in space, but appear as a single event
in time, whereas the Peregrine breather is aperiodic both in time and space. It is
this last one that is the most promising as a good and simple analytical model of a
prototype ‘freak wave’ event.

We hereinafter restrict ourselves to the (1+1) model. As the modulational instability
is triggered at negative values of the coefficient α‖ only, take the complex conjugate
and reduce (4.19b) to

iĀt + Āxx + |α‖| |Ā|2Ā + iν∗ e−iϕ |Ā|1−σ Ā = 0. (6.1)

Owing to the presence of a complex dissipation term no analytic solution is known
at present and a priori a perturbation approach does not look particularly promising.
Thus to study the effect of the bottom friction on the nonlinear development of the
modulational instability and, in particular, breather formation, one has to resort to
numerical simulations.

Rewrite (6.1) in the form

Āt = iĀxx + iF (Ā)Ā, (6.2a)

F (a) = |α‖||Ā|2 + iν̃ e−iϕ |Ā|1−σ , (6.2b)

create grids in space and time

xj = j δx, tn = n δt , (6.3a)

where

j = −N

2
:

N

2
− 1, δx =

2L

N
, (6.3b)

and impose periodic boundary conditions at the ends of the interval [−L, L].
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Starting from the initial condition in the form of a slightly modulated uniform
wave

Ā0
j = Ā0{1 + â cos(mr xj )}, (6.4)

where Āu, â are the initial amplitudes of the carrier and the sideband, the solution is
advanced in time by using the split-step scheme of Besse (2004)

Φn+1/2
j = 2F

(
Ān

j

)
− Φn−1/2

j , (6.5a)

Ān+1
j − Ān

j

τ
= i�h

[
Ān+1/2

j

]
+

i

4
Φn+1/2

j (Āj+1 + Āj−1)
n+1/2 (6.5b)

Φ−1/2
j = F

(
Ā0

j

)
. (6.5c)

Here the subscript j marks the point on the spatial grid, the superscript n the number
of the step in time. In this representation, �h is the standard discrete operator of the
second derivative

�h[Āj ]
n =

Ān
j+1 − 2Ān

j + Ān
j−1

δ2
x

, (6.5d)

and the values at the intermediate moments of time tn+1/2 are computed according to
the rule

f n+1/2 =
f n+1 + f n

2
. (6.5e)

Spatial discretization is based on the integrable discrete NLS equation of Ablowitz &
Ladik (1976). This has the advantage of being an exactly integrable discrete analogue
of the continuous NLS equation, possessing a Hamiltonian structure, N exact
conservation laws and other extremely useful properties. The most important one
is that it does not induce a numerical chaos triggered by rounding errors (see
Ablowitz & Herbst 1990). Breather solutions are homoclinic orbits of the NLS
equation, i.e. they start and end in the vicinity of an unstable manifold (Mclaughlin &
Shatah 1998). Proximity to homoclinic orbits can act as a source of chaos in weakly
perturbed problems, and so numerical schemes based on the non-integrable spatial
discretization of the NLS equation often exhibit irregular behaviour and are extremely
sensitive to round-off errors.

The starting point for the development of instability (‘fixed point’) in the
conservative case is the uniform solution

Āc(x, t) = |Ā0| exp(i|α‖||Ā0|2t + iφ̃), (6.6)

where A0 is a constant and φ̃ ∈ [0, 2π). In this sense there exists a ring of fixed points
characterized by different values of the phase φ̃, each of which can be a starting point
for the development of homoclinic structure.

Assuming that the perturbation to (6.6) is harmonic in x, its period has to be a
divider of the computational domain 2L. Hence, only a countable number of modes
is admissible, with wavenumbers given by

mr =
πr

L
,

where r is an integer. The growth rate, γr , of the rth mode is then given by

γr± = ±m2
r

(
2|α‖||Ā0|2

m2
r

− 1

)1/2

(6.7)
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and the mode is unstable when

0 < m2
r < 2|α‖||Ā0|2. (6.8)

The total number of admissible unstable modes is given by the largest integer M ,
satisfying

0 < M < (2|α‖|)1/2 |Ā0|L
π

. (6.9)

If M is larger than 1, several breathers of different periods may form simultaneously.
Interactions between these breathers may result in a complicated structure of the wave
field, which rapidly starts to resemble chaos. This homoclinic chaos is an inherent
feature of the NLS equation and originates from coalescence of several homoclinic
orbits, rather than from rounding errors or any other numerical inaccuracies
(Ablowitz & Herbst 1990). Therefore, it cannot be avoided by error control, choice
of discretization method or grid refinement.

A set of numerical computations has been performed at different values of the
friction coefficient ν∗ and the non-dimensional depth kh. The phase lag between the
bottom stress and velocity in accordance with experimental data was taken to be
ϕ =25◦. All runs started from the initial condition (6.4) with

Ā0 = 1, â = 10−3 and M = 1 (6.10)

The nonlinear coefficient α‖ is a function of non-dimensional depth kh only. Two
values of the latter were chosen for simulations

kh = 1.5, ⇒ α‖ = −0.2999 (6.11a)

and

kh = 1.7, ⇒ α‖ = −0.5923. (6.11b)

The lengths of the interval in each case are

L = 7.5 ⇒ (2|α‖|) 1
2

|Ā0|L
π

≈ 1.895 for kh = 1.5 (6.12a)

and

L = 5.5 ⇒ (2|α‖|
) 1

2
|Ā0|L

π
≈ 1.938 for kh = 1.7, (6.12b)

chosen to ensure that only one mode is unstable and to avoid the homoclinic chaos,
as well as to maximize the amplitudes of the forming breathers.

Figure 4 shows one period of a pure Akhmediev’s breather at L = 7.5, kh = 1.5.
The uniform background solution Āu(t) = 1 is subtracted for clarity. Akhmediev’s
breathers are a one-parameter family of solutions, so the choice of the period fixes the
total maximal amplitude, |Āmax | =2.701, in this case. This solution would certainly
pass the amplitude criterion for a ‘freak wave’. It is worth noting that the characteristic
length of this solution specified by the width of the pulse at the level equal to twice the
amplitude of the carrier is 1.4, which in non-scaled dimensional variables is 1.4λ/2πε,
where λ is dimensional wavelength. For carrier steepness 0.1 the width is just ∼ 2λ.
The lifespan of the breather (defined as the period where |A| > 2) is 4, which for the
same carrier steepness gives about 60 wave periods.

Figure 5 shows the result of calculations for kh = 1.5, ν∗ =0.025. The uniform
background solution, decaying in accordance with (5.6), is subtracted. The maximal
relative amplitude of the perturbation is very small, |Āmax | − Āu = 0.109, and taking
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Figure 4. Pure Akhmediev’s breather, ν∗ = 0, at kh =1.5. The uniform background is
subtracted.
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Figure 5. A breather damped by the bottom stress, ν∗ = 0.025, at kh =1.5. The decaying
uniform background is subtracted.
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ν∗ 0 0.005 0.01 0.015 0.02 0.025 0.03 0.35 0.04

max{|Ā| − Āu} 1.699 1.366 1.025 0.669 0.315 0.109 0.045 0.023 0.014

Table 5. Maximal wave height vs magnitude of the friction at kh = 1.5. The decaying
uniform background is subtracted.

ν∗ 0 0.01 0.02 0.03 0.04 0.05 0.06

max{|Ā| − Āu} 1.714 1.369 1.017 0.653 0.296 0.100 0.041

Table 6. As table 5 but at kh = 1.7.

into account that the background wave field is decaying, the observed total peak
amplitude (background plus perturbation) does not exceed unity. Although technically
the modulational instability still exists and manifests itself by the 102 growth of the
initial 10−3 perturbation, this is, essentially, still a linear wave. From a practical
viewpoint νcr = 0.025 can be considered as a dissipative threshold for the onset of
‘noticeable’ modulational instability. The maximal amplitudes of the perturbation,
|Āmax | − Āu, obtained at different values of the friction coefficient are presented in
table 5 for kh =1.5 and in table 6 for kh = 1.7. At first glance the values of the friction
coefficient, νcr = 0.025 and νcr = 0.05, could be taken as an effective threshold of the
modulational instability at kh = 1.5 and kh = 1.7 respectively. Dissipation of this
magnitude seems to prevent development of any noticeable modulational instability,
i.e. the amplitude of the perturbation remains small and the envelope amplitude never
exceeds the values typical for unperturbed linear waves. However, this is true only for
the O(10−3) or smaller initial perturbations. In contrast to the inviscid situation, the
amplitude of the resulting breather is not predetermined but depends on the initial
perturbation amplitude. Therefore a more robust criterion should be sought as the
threshold for freak wave formation.

Roughly, one can assume that a freak wave does not form if, first, the relative
amplitude of the perturbation never exceeds some pre-chosen finite value, |Āmax | −
Āu < Āthr . We choose Āthr = 1, which for example for the same initial amplitude (10−3)
results in

νthr � 0.01 at kh = 1.5,

νthr � 0.02 at kh = 1.7.

}
(6.13)

Second, we have to consider finite-amplitude initial perturbations and apply the
already chosen maximal amplitude criterion. For example, for the initial amplitudes
0.01 and 0.1 the threshold values of friction ensuring that the perturbation (with the
carrier wave subtracted) does not exceed 1 are, respectively, ν∗ = 0.015 and ν∗ =0.025.
Thus the friction required to stop freak wave formation depends on the initial
amplitude of perturbations. It is worth emphasizing that the initial amplitude we
are speaking about here relates only to the initial amplitude of a very special initial
mode generating the breather, and not to the general level of broadband primordial
noise typical of natural wave fields. The problem of relating the initial amplitude
of this particular mode to the general noise level is in principle solvable under the
assumption of a priori known noise distribution, but the noise distribution is not
known. Instead we will attempt to guess the ‘natural level’ of noise by employing
our numerical model. As we noted, in our setting the periodicity condition in space
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Figure 6. A ‘fluffy’ Akhmediev breather emerging out of initial white noise of amplitude
0.01, ν∗ = 0, at kh = 1.5. The uniform background is subtracted.

selects just a single mode which generates a breather. The presence of other modes
does not noticeably affect the wave pattern as illustrated by figure 6 (cf figure 4)
where an inviscid breather emerges out of a broadband (white) noise produced by
128 harmonics each having amplitude 0.01 and random phase.

The picture is not sensitive to the number of other modes either (simulations with
96 and 64 harmonics were also carried out). If we assume (we did not attempt two-
dimensional simulations) that adding into the system another 128 transversal Fourier
harmonics has a similarly negligible effect on the field evolution then we arrive at
the situation where the integral energy contained in 104 modes of amplitude 10−2 is
approximately equal to the energy of the basic wave. Therefore the initial amplitude
level 10−2 might not be small and unrealistic. We stress that these values should
be treated more like a guess than an estimate. We do not know what kind of mode
selection occurs when no periodicity condition is imposed; the most likely outcome
is some kind of homoclinic chaos. Even in the absence of friction the problem is not
tractable by the Inverse Scattering Technique unless an artificial assumption of strong
spatial localization of the initial noise is made. By choosing the initial amplitude of
the breather mode to be one order of magnitude larger, i.e. 0.1, we probably strongly
overestimate the natural noise level, but we guess that this would give us an estimate
from above.

The frictional threshold for stemming freak wave formation based upon the above
assumptions is much lower than that for the total suppression of modulational
instability as the linear analysis (5.20) would suggest. There are two physical
mechanisms at work, simultaneously responsible for this dramatic disparity. First,
note that while the growth of perturbations slows down with amplitude, the friction
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increases. This should halt the perturbation growth at a somewhat lower level. Second,
friction leads to decay of the mean carrier wave amplitude as given by (5.6), which
in itself results in significantly reduced maximal amplitudes attained by the growing
perturbations. The relative importance of these two mechanisms is not clear. However,
our preliminary simulations with the decay of the carrier wave amplitude artificially
switched off seem to suggest that the second one is the main factor in the suppression
of large-amplitude events.

It is also worth noting that the largest of the Akhmediev breathers and Ma solitons
– the Peregrine soliton – corresponds in the inviscid limit to the longest initial
perturbations which are more susceptible to bottom friction.

7. Discussion
The mathematical content of the study can be briefly summarized as follows.

Employing a standard asymptotic technique, we derived an NLS-type evolution
equation (4.18) for weakly nonlinear narrow-banded waves in water of finite depth,
with the turbulent bottom stress taken into account. Under an appropriate scaling the
bottom friction adds an additional dissipative term, iν∗e

iϕ |A|1−σA, with all the specifics
of the problem accumulated in the coefficient ν∗ given by (4.18c). The bottom friction
ν∗ exceeding the critical value specified by (5.20) eliminates modulational instability,
while ν∗ >νthr is sufficient to suppress the formation of breathers; νthr depends on the
initial amplitude of the perturbations. The threshold values of ν∗ = νthr were found in
the course of simulations relying upon questionable but explicit assumptions about
the magnitudes of initial perturbations; the values of νthr proved to be surprisingly
low, far less than 0.1 in all cases. However, the key question of how the model relates
to the real world is much less clear, at the very least it requires a thorough discussion,
which we attempt to provide below.

The point that is straightforward to clarify, is to convert to physical variables the
model predictions made in terms of non-dimensional values of the friction coefficient
ν∗. With the values of the exponent σ and the phase shift ϕ in the drag law (3.16d)
fixed on the basis of experimental data (Soulsby et al. 1993), there remain four
parameters determining the numerical value of ν∗: dimensional bottom roughness
ks , wavenumber K (or the wavelength λ=2π/K), wave steepness ε, and the non-
dimensional depth kh. The main practical question this paper attempts to address
can be formulated in several alternative ways.

Assuming the relative depth kh and the initial wave steepness ε are known, what
roughness of the bottom is required to suppress a freak wave of a certain length?

An attempt to address this question is provided by figure 7. Each curve (a straight
line in this case) in figrue 7(a) corresponds to the locus of the points in λ, ks space
where ν∗ = νthr , the threshold value for freak wave (breather) formation based on
the assumption of primordial noise of amplitude equal to 0.01. Different curves
correspond to different values of steepness, ε, with the details provided by the legend.
The waves of a given steepness subject to subthreshold modulations are above the
corresponding curve. Similar results for ν∗ = νthr based on the 0.1 initial amplitude,
which we believe provide an estimate from above, are shown in figure 7(b). The
relative depth is fixed at kh = 1.5 in (a) and (b). The values of the bottom roughness
in figure 7(a) are realistic: ks is, normally, in the region of 1–30 cm as given for
example by Grant, Williams & Glenn (1984), Myrhaug, Staatelid & Lambrakos
(1998) or Lowe et al. (2005). However, the predictions shown in figure 7(b) based on
the 0.1 initial amplitude suggest that to suppress freak waves of length λ exceeding
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Figure 7. Wavelength/roughness-space diagram illustrating suppression of freak wave
formation at kh = 1.5. (a) ν∗ = νthr = 0.015, white noise (initial) amplitude is 0.01.
(b) ν∗ = νthr = 0.025, initial amplitude is 0.1. Formation of breathers exceeding the critical
amplitude is suppressed above the corresponding curve.
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Figure 8. Steepness/roughness-space diagram of suppression of freak wave formation at
kh = 1.5. (a) ν∗ = νthr = 0.015, white noise (initial) amplitude is 0.01. (b) ν∗ = νthr = 0.025, initial
amplitude is 0.1. Formation of breathers exceeding the critical amplitude is suppressed above
the corresponding curve.

250 m, and steeper than ε � 0.075 a still realistic but much less common roughness
(ks > 20 cm) is required.

Assuming the relative depth kh and the wavelength λ to be known, what roughness
of the bottom is required to suppress formation of a freak wave in a wave field of
certain mean steepness/height? The answer to this question is suggested in figure 8.
Each curve in figure 8(a) corresponds to the locus of the points in ε, ks space where
the friction coefficient is equal to νthr , the threshold value for freak wave (breather)
formation calculated under the same assumptions as for figure 7(a). Different curves
correspond to different values of the wavelength λ, with the details given in the
legend. The waves of a given length are unlikely to exceed the critical amplitude in
the domains above the corresponding curve. Similar results for ν∗ = νthr calculated
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under the same assumptions as for figure 7(b), are shown in figure 8(b). Again the
depth is fixed at kh = 1.5.

For example, for an ocean swell with λ� 500 m and ε � 0.05, the threshold value
of the bottom roughness required to prevent freak wave formation is about ks � 4 cm
(or � 12 cm), depending on which of the two guesses about the level of initial noise is
adopted. Typical wind waves are much shorter and steeper than the swell with λ � 50–
100 m, ε � 0.1. Under the same assumptions similar estimates predict suppression of
freak wind waves when roughness ks exceeds 6 cm and 10–12 cm respectively.

However, the parameter to which the values of the dissipative threshold are most
sensitive is the water depth, owing to both the growth of the nonlinear coefficient
and primarily, the rapid decay of the orbital velocity, and hence bottom stress, with
kh. The results of similar simulations at kh = 1.7 (not presented here) suggest that
that the value of the bottom roughness required to prevent freak wave formation
is generally unrealistic for sea conditions. The situation deteriorates rapidly with
the growth of kh. The stabilizing influence of bottom stress is confined to water of
depth

h′ �
1.5

2π
λ ≈ λ/4.

This yields h′ � 120 m for the swell, and h′ � 15–25 m for wind waves. It is worth
reiterating that the range of interest of kh is not confined from below by the critical
value kh = 1.363, but extends down to kh � 0.38 for oblique modulations.

We would also like to emphasize that although we have focused our attention upon
the range of depths which includes the critical (for longitudinal modulations) value
kh = 1.363, in the suppression of the instability found, the vanishing of the cubic term
coefficient α‖ at kh = 1.363 is not the main factor. The values of α‖ for kh = 1.5, 1.7
used in calculating the examples are finite (see (6.11)). The relative insignificance
of this factor could be also seen from the fact of similar suppression of oblique
instabilities considered in Appendix A and illustrated in figure 9 there.

The main physical implications of the model can be briefly summarized as
follows. First, the bottom friction does affect evolution of surface waves in water
of intermediate depth in a quite significant way. Apart from causing decay of mean
height/steepness, it can suppress the wave modulational instability, especially its
nonlinear stage. Surprisingly small values of the non-dimensional bottom stress prove
to be enough to prevent weakly nonlinear prototypes of freak waves from reaching
critical amplitudes. The threshold value depends primarily on the relative depth
kh, on the bottom roughness, the incident wave length and steepness, and the key
unknown–the natural level of low-frequency noise in the wave field. Estimates yield
realistic values of bottom roughness, especially for ocean swell. Therefore, the effects
described above are expected to be observable and the theory could be corroborated
by data from the field in the future. At present, there are too few observations of
freak waves; they are unique by their very nature, being an extreme event with a very
low probability. At the same time, the decrease of mean amplitude is verifiable and
can be checked by analysing available data.

The model proposed is a first approximation to the real world and it is appropriate
to discuss its limitations, possible extensions and the ways of further developments.

We adopted a priori an O(ε3) scaling for the bottom stress. This (depending on wave
steepness) seems to be most adequate for kh � 1.3, where only oblique instabilities
could exist. Of course, such instabilities should be strongly suppressed by the friction
even for a relatively smooth bed (see Appendix A). However, for the range of depths
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kh � 1.5–1.7, the estimates in § 3 suggest that the stress term might enter at the
O(ε4) of the expansion (2.8) and still be of importance. At this order the finite
width of the wave spectrum should be taken into account, leading to the next-order
Dysthe-type generalization of the Davey–Stewartson or NLS equations for the
envelope amplitude. Strictly speaking, it is the modification of such equations
due to bottom stress (similar to the modification of the NLS already carried out
and, crucially, with the same friction term) that should be studied to determine
propensity of a wave field to ‘freak wave’ formation. For longitudional modulations
the corresponding equation

iAt − Axx + α‖|A|2A + {βAxxx + α21|A|2Ax + α22|A|2Āx} + iν∗e
iϕ |A|1−σA = 0, (7.1)

where ν∗ is the same as in (4.18c), while the expressions for other coefficients valid
for all depths can be found e.g. in Sedletsky (2003).

Yet we have chosen to remain within the framework of the modified NLS equation,
since the main purpose of this paper is to demonstrate the existence of the effect
and to develop the simplest possible model, rather than make detailed predictions
which constitutes a subject for a separate study. Both the NLS and Dysthe-type
equation (7.1) are derived for free water waves and their relevance for wind waves
requires justification. Recall also that the time scales of envelope evolution within
the framework of the NLS and Dysthe-type models are O(ε−2) (apart from the
O(ε−3) supergroups in the Dysthe-type models). Direct wind forcing for spectral peak
waves is negligibly small, while the ‘indirect’ wind input received by these waves via
wind forcing of shorter waves and the inverse cascade is scaled at most as O(ε4)
(e.g. Badulin et al. 2005). Thus, for both possible scalings of interest the modulation
occurs at time scales much faster than those at which wind might affect the wave
dynamics. Although the influence of the turbulent surface boundary layer on waves
has not been studied in our context, the established view is that it is much weaker
than that of the bottom boundary layer. In this sense, the total neglect of wind seems
to be justified. One of the major implications of the fact that wind effects can appear
only in higher orders is that the attenuation of the mean wave field predicted by our
model cannot be balanced by wind input and, therefore, is not an artefact of the
model.

The essence of the model and its fundamental limitation is the built-in assumption
of weak wave nonlinearity. One may argue that a weakly nonlinear mechanism cannot
create a highly nonlinear freak wave. Although this argument is difficult to dispute,
we view the modulational instability as a necessary preliminary stage of freak wave
formation, as was clearly shown by Dyachenko & Zakharov (2005) and Henderson
et al. (1999). The situation is very similar to that in the problem of wave breaking:
waves break via fast strongly nonlinear mechanisms as soon as the local slope exceeds
30◦ (Caulliez 2002). However, it is weakly nonlinear wave dynamics which determines
whether and when the threshold is reached. Similarly, if the dissipation is strong
enough to sufficiently suppress development of the modulational instability, it is
also strong enough to make the emergence of freak waves via the modulational
instability route impossible. It is obvious that the nonlinear friction, which increases
with wave amplitude, also tends to inhibit formation of large-amplitude excursions
of the wave field, whatever the underlying mechanism, although it is not clear to
what extent freak wave formation caused by linear focusing is hampered by bottom
fiction. With the modulational instability sufficiently suppressed we can only claim
that the probability of a freak wave is somewhat less than that predicted by the
Rayleigh distribution, which in itself has practical implications for offshore structure
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design specifications. To get a quantitative estimate one has to undertake extensive
direct numerical simulations within the framework of our model, which goes beyond
the scope of the present paper. It is worth noting that as soon as the self-consistent
nonlinear evolution of a random wave field is simulated within the framework of
the model, then any assumptions on the level of noise are no longer needed. Only
after such a study can intelligent decisions be made on where to locate an offshore
structure and whether an artificial increase of roughness might be justified.

This work constitutes a part of the research contract 05/RFP/ENG085 from
Science Foundation Ireland. Financial support of SFI is, hereby, gratefully
acknowledged by V. V.V. and G. P. T. V. I. S. gratefully acknowledges support by
INTAS through grant: 05-2206 8014.

Appendix A. Oblique modulations
Let us consider a plane wave modulation of the envelope oblique to the x-axis.

That is, the amplitude of the envelope A and the induced pressure P in (4.18) are
assumed to be functions of time and

ξ = x cos θ + y cos θ, (A 1)

where θ is measured from the x-axis. Taking into account that

∂

∂x
= cos θ

∂

∂ξ
,

∂

∂y
= sin θ

∂

∂ξ
, (A 2)

equations (4.19) are transformed into

Pu = −βp

η
fθ |Au|2 , (A 3a)

iAt − cos 2θAξξ + αϑ |A|2A + iν∗e
iϕ |A|1−σA = 0, (A 3b)

where η, s, αϑ and fθ are given by (4.16b), (5.2c).
Equation (A 3b) is self-focusing when αϑ cos 2θ < 0, even at kh < 1.363, provided the

angle of incidence θ is different from zero. For example, in water of non-dimensional
depth kh = 0.7, the BF instability of an oblique envelope is allowed for comparatively
narrow range of angles 42◦ � θ � 45◦. Choosing θ = 43◦ implies αθ = −0.6104 and the
numerical simulations yield the following threshold values of friction for the same
two cases: initial white noise of amplitude 0.01 and the breather mode of initial
amplitude 0.1

νthr = 0.015, νcr = 0.025. (A 4)

The diagrams in ks, λ space in figure 9 outline the regions where the breathers
originating from the particular class of initial conditions do not exceed two. The
boundary is shown for several values of wave steepness ε given in the legend. Bottom
roughnesses required to stop freak wave formation through the instability of oblique
modulations of the wave envelope out of initial white noise of amplitude 0.01(left
panel) are rather low: ks � 1 cm. They are well below those typically occurring in
nature. The values of ks sufficient to prevent occurrence of breathers out of initial
amplitude 0.1 are ks � 2 cm which is at the low end of the values encountered in the
sea. This suggests that the generation of freak waves at such depth is very unlikely,
but one cannot exclude the arrival of a freak wave generated at larger depth.
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Figure 9. Steepness/roughness-space diagrams illustrating suppression of freak wave
formation at kh = 0.7, θ = 43◦. (a) ν∗ = νthr = 0.015, white noise (initial) amplitude is 0.01.
(b) ν∗ = νthr =0.025, initial amplitude is 0.1. Formation of breathers exceeding the critical
amplitude is suppressed above the corresponding curve.

Appendix B. Long-time asymptotics
The system (5.8) can be easily cast into a single equation

att + Λat + Da = 0, (B 1)

which can be further transformed by the following change of the independent variable

χ = ln (1 + Λ0t) = ln
Λ0

Λ
, ⇒ Λ = Λ0 e−χ . (B 2)

Consider

t ∈ [0; +∞) → Λ

Λ0

∈ [1; 0) → χ ∈ [0; +∞). (B 3)

A new stability equations is

ãχχ +
μ

Λ2

{
μ + 2αϑA2

u − tan ϕΛ
}

ã = 0. (B 4)

No solution in closed form is known for the general version. However, (B 4) reduces
to the Whittaker equation, provided

2σ

1 − σ
= 0; −1; −2, ⇒ σ = 0; −1.

Therefore, exact solutions in terms of the Whittaker functions are possible, if the
friction coefficient in the quadratic drag law is

fw = const, or fw ∼ Au ,

corresponding to the friction term being either quadratic or cubic in amplitude.
At large times, as χ → + ∞ and μ fixed, the first term in curly brackets in (B4) is

dominant, and the equation is asymptotically close to

aχχ +
μ2

Λ2
0

e2χa = 0,

the solution of which is

a = C1J0

(
|μ|
Λ0

eχ

)
+ C2I0

(
|μ|
Λ0

eχ

)
= C1J0

(
|μ|
Λ

)
+ C2I0

(
|μ|
Λ

)



294 V. V. Voronovich, V. I. Shrira and G. Thomas

where J0(x), I0(x) are the usual Bessel functions. The amplitude of perturbation
oscillates in time and slowly decays in absolute value

a ∼ sin{|μ|t + θ}√
|μ|t

, t → ∞.

We have to point out, though, that this result is not of much practical value, since the
long-time asymptotics are obtained on the basis of linear approximation. Nonlinearity
will probably occur long before this stage is reached, unless the sideband is stable or
close to the stability boundary from the very beginning.
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